A higher-dimensional generalization of the geodesic part of the Goldberg-Sachs theorem

نویسنده

  • Mark Durkee
چکیده

In more than four spacetime dimensions, a multiple Weyl-aligned null direction (WAND) need not be geodesic. It is proved that any higher-dimensional Einstein spacetime admitting a non-geodesic multiple WAND also admits a geodesic multiple WAND. All five-dimensional Einstein spacetimes admitting a non-geodesic multiple WAND are determined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Triangularization over finite-dimensional division rings using the reduced trace

In this paper we study triangularization of collections of matrices whose entries come from a finite-dimensional division ring. First, we give a generalization of Guralnick's theorem to the case of finite-dimensional division rings and then we show that in this case the reduced trace function is a suitable alternative for trace function by presenting two triangularization results. The first one...

متن کامل

The Goldberg-Sachs theorem in linearized gravity

The Goldberg-Sachs theorem has been very useful in constructing algebraically special exact solutions of Einstein vacuum equation. Most of the physical meaningful vacuum exact solutions are algebraically special. We show that the Goldberg-Sachs theorem is not true in linearized gravity. This is a remarkable result, which gives light on the understanding of the physical meaning of the linearized...

متن کامل

Numerical Treatment of Geodesic Differential Equations on Two Dimensional Surfaces

This paper presents a brief instructions to nd geodesics equa-tions on two dimensional surfaces in R3. The resulting geodesic equations are solved numerically using Computer Program Matlab, the geodesics are dis-played through Figures.

متن کامل

Generalization of Titchmarsh's Theorem for the Dunkl Transform

Using a generalized spherical mean operator, we obtain a generalization of Titchmarsh's theorem for the Dunkl transform for functions satisfying the ('; p)-Dunkl Lipschitz condition in the space Lp(Rd;wl(x)dx), 1 < p 6 2, where wl is a weight function invariant under the action of an associated re ection group.

متن کامل

GENERALIZATION OF TITCHMARSH'S THEOREM FOR THE DUNKL TRANSFORM IN THE SPACE $L^P(R)$

In this paper‎, ‎using a generalized Dunkl translation operator‎, ‎we obtain a generalization of Titchmarsh's Theorem for the Dunkl transform for functions satisfying the$(psi,p)$-Lipschitz Dunkl condition in the space $mathrm{L}_{p,alpha}=mathrm{L}^{p}(mathbb{R},|x|^{2alpha+1}dx)$‎, ‎where $alpha>-frac{1}{2}$.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009